"i?raﬂhﬁ(, an
AJSP.NET Cove Web APN
Project o %Igure

Funclion

This blog will introduce the key migration steps and practices to assist you in
migrating similar Web API projects.

Background of the project

This Web API project is part of my blog system and is used to send emails to
administrators or readers. In the overall blog architecture, it is separate from the main
blog site and runs on an independent service with Azure App Service. It makes use of
a custom API Key for authentication. Passwords for email accounts are stored in Azure
Key Vault. The backend has no database support. When the main blog site requires
push notifications, it will send the payload of the notification to the APl via REST
request using the website's proprietary APl Key to complete the email sending.

Even though the Web API lacks event and queue functionality that is typically found in
a serious notification system, my simple notification system has been running well
and can meet business needs. The most serious issue, however, is the cost, which
includes operation and maintenance costs as well as development costs.

First and foremost, the App Service Plan that hosts the Web APl is a significant
complexity. There is currently no way to select Consumption Plan for an ASP.NET
Core application, and as such the API will be billed even when it is inactive.
According to the company, the APl is only used about ten times per day, with a total
processing time of less than two minutes. However, | must pay for the remaining 1438
minutes every day. | must also free up computing resources so that Microsoft can
assign them to those who require them in COVID-19, as well as reduce my carbon
footprint to contribute to global environmental improvement.

Second, even a basic and straightforward Email notification feature needs a full
framework to support it. Although ASP.NET Core offers a framework that is incredibly
adaptable and robust, Azure Function may entirely free up these fundamental chores.
Infrastructure is irrelevant to Azure Function; it only cares about business code. In
other words, developers typically just need to write the function's business logic and
not the code necessary to start, route, or assign API Keys.

Finally, Azure Function enables me to keep using my existing knowledge of the.NET
technology stack. To create business logic, Azure Function supports.NET, Java,
Python, Node.js, and even PowerShell. This indicates that my code can run on a new
platform with very little modification.

Is the question of whether Azure Functions will force your application to run
exclusively on Azure the most crucial one for everyone? The response is no. Since the
infrastructure of Azure Function is now open source and its apps can be containerized
and deployed to any cloud, including those of rivals, such as China's Alibaba Cloud
and other platforms, it has significantly aided rivals in building world-class serverless
platforms. You can run the full design in a local data centre if you don't want to use
the cloud. Therefore, there is no need to be concerned about falling victim to
Microsoft's traps.

Migration procedures and essentials

The basics of using Azure Function are not covered in this tutorial.
Learn the fundamentals.
API Key verification

This is a component of the original project framework for the ASP.NET Core Web API.
To prevent the APl from being called without authorization, | utilized a special API
key.
~ Moonglade.MNotification.API
~ Authentication

ApiKeyAuthenticationHandler.c

ApiKeyAuthenticationOptions.cs

AuthenticationBuilderExtensions.cs

Azure Function frees us from this section of code and offers a very similar App Key
concept to manage authentication with only a few mouse clicks and no lines of code!

App Service

|/9 Search (Ctrl+/) | i« () Refresh

»COverview
] o Host keys (all functions)
W Activity log
Ba Access control (IAM) Use Host keys with your clients to access all your HTTP functions

' ' Runtime APls,
‘ Tags
Z2 Diagnose and solve problems T Mew host key @@ Show values
@ Security N Filter host keys

Events {preview) Name Value

Functions _master T Hidden value. Click to show v

%) Functions default T Hidden value. Click to show v

I App keys I _

These App Keys can be sent with the query string to the function endpoint. | therefore
erased the entire APl Key code that | had laboriously written when porting the
programme. There will be no more maintenance fees for this section of the code.

Azure Key Vault for reading
The first application made use of Microsoft.Azure.

To read data from Azure Key Vault, use the KeyVault package and the System
Assigned Identity of the App Service. It is clear that this relationship with Azure is true.

var keyVaultClient = new KeyVaultClient(new
KeyVaultClient.AuthenticationCallback(azureServiceTokenProvider.KeyVaultTo

kenCallback));
builder.AddAzureKeyVault(

$"https://builtConfig["AzureKeyVault:Name"]}.vault.azure.net/",

| I N A [PV K

To avoid coupling the code with Azure and to enable me to quickly set up certain
configuration items to read from Key Vault, | chose to use environment variables in
Azure Function. The application still views Azure Key Vault values as environmental
variables even if the method of reading them is transparent to the application.

Set the configuration items that need to read from the Key Vault to the format shown
below on the Configuration page of Azure Function.

@Microsoft.KeyVault(SecretUri=<Azure Key Vault Secret Uri>)

My EmailAccountPassword, for instance, is an environment variable. When
configuration is successful, Source will be shown as the key vault reference.

App Service

|;’3 Search (Ctrl+/) « () Refresh
&* Diagnose and solve problems -
@ security Application settings Function runtime settings General settings

Events (preview) Application settings

Functions Application settings are encrypted at rest and transmitted over an encrypted channel. You can choose to display them
Functi below. Application Settings are exposed as environment variables for access by your application at runtime. Learn mo
fi Functions
App keys

I Mew application setting < Show values ¢” Advanced edit

App files " Filter application settings

2 Proxies
Name Value Source
Deployment
AdminEmail < Hidden value. Click to show value App Config
mi, Depl ent slot — -
Eployment siots APPINSIGHTS_INSTRUMENTATIOMKEY @ Hidden value. Click to show value App Config
&% Deployment Center APPLICATIONINSIGHTS_CONNECTION_STRIN <@ Hidden value. Click to show value App Config
Settings AzureWeblobsStorage €@ Hidden value. Click to show value App Config
I configuration EmailAccountPassword <@ Hidden value. Click to show value
Authentication / Authorization EmailDisplayName T Hidden value. Click to show value App Config
@ Application Insights Enabless! @ Hidden value. Click to show value App Config
Identity FUMNCTIOMNS_EXTENSION_VERSION T Hidden value. Click to show value App Config
FUNCTIONS_WORKER_RUNTIME € Hidden value. Click to show value App Config

The application's code for accessing this environment variable is identical to that for
reading the standard environment variable:

Environment.GetEnvironmentVariable("EmailAccountPassword",

Because Azure Key Vault is incredibly versatile, you may continue to maintain the
deployment on the local development environment or other clouds independent.
Your code is not required to use solely Azure by Microsoft.

Please be aware that your Function App must activate System Assigned Identity on its
own.

App Service
P Search (Ctrl+/ “ .
- (N System assigned User assigned
Deployment A system assigned managed identity enables Azure resources to authenticate
permissions can be granted via Azure role-based-access-control. The lifecycle
I Deployment slots Virtual Machine) can only have one system assigned managed identity. Learn
% Deployment Center
|E| save X Discard 'T_\ Refresh O Got feedback?
Settings
It configuration Status (@
' : '
Authentication / Authorization N Off m-'
@ Application Insights ObjectID @
Identity Q
Permissions @
| e LT

Additionally, you must set up Get and List permissions in Azure Key Vault for the
Function App.

Key vault

|f’ Search (Ctrl+/) ‘ « () Refresh

Ao Access control (IAM) -
& Tags Enable Access to:

D Azure Virtual Machines for deployment (&
&2 Diagnose and solve problems -
B Azure Resource Manager for template deployment (@

Events (preview) .

D Azure Disk Encryption for volume encryption @

Settings
+ Add Access Policy
Keys
= Current Access Policies
Secrets
k=l Certificates Name Email Key Permissions Secret Permissions Certificate Permissions

by Networking

Microsoft.Azure.Front... | 0 selected ~ | | Get ~ | | Get ~ |
! Properties
B Locks notification | 2 selected e | | 2 selected e | 2 selected e |
B3 Export template UNKNOWN

With just a few mouse clicks, all of this is possible.

Consumption Strategy

This is most likely the most exciting aspect of the entire Function. Consumption Plan
is an option when creating an Azure Function. The Plan only charges for the function's
execution time. The billing for my blog notification system is less than $5 per month,
assuming that the APl is only called a few times per day. The previous Standard S
App Service Plan cost $69.35 per month, so the Consumption Plan saved me over
$60.

Plan

The plan you choose dictates how your app scales, what features are enabled, and how it is priced. Learn more [

Plan type * @ | Consumption (Serverless) s |

| Consumption (Serverless) ‘

Premium

App service plan

The Code

What distinguishes the Function code from the original Web API code, which is the
one thing that.NET programmers care about the most?

First of all, only your business code is still required; Program.cs, Startup.cs, Controller,
and even appsettings.json are no longer required. Now that there is only one class in
my application tier, the logic is remarkably identical to that of the original Web API
Controller.

Original API Controller source code:

[Authorize]

[Route("api/[controller]")]

[ApiController]

public class NotificationController : ControllerBase
{

private readonly ILogger<NotificationController> _logger;
private readonly IMoongladeNotification _notification;
public AppSettings Settings { get; set; }

public NotificationController(
ILogger<NotificationController> logger,
IOptions<AppSettings> settings,
IMoongladeNotification notification)

_logger = logger;
Settings = settings.Value;
_notification = notification;

b

[HttpPost]
public async Task<Response> Post(NotificationRequest request, CancellationToken ct)
{
T GetModelFromPayload<T>() where T : class
{
var json = request.Payload.ToString();
return JsonSerializer.Deserialize<T>(json);

if (!Settings.EnableEmailSending)
{

return new FailedResponse((int)ResponseFailureCode.EmailSendingDisabled, "Email Sending
is disabled.");

b

_notification.AdminEmail = request.AdminEmail;
_notification.EmailDisplayName = request.EmailDisplayName;
switch (regquest.MessageType)
{
case MailMesageTypes.TestMail:
await _notification.SendTestNotificationAsync();
return new SuccessResponse();

default:
throw new ArgumentOutOfRangeException();
}
}
catch (Exception e)

{

_logger.LogError(e, $"Error sending notification for type '{request.MessageType}'.
Requested by '{User.Identity.Name}'");

Response.StatusCode = StatusCodes.Status500InternalServerError;
return new FailedResponse((int)ResponseFailureCode.GeneralException, e.Message);

The following is the Azure Function code:

public class EmailSendingFunction
{
[FunctionName("EmailSending")]
public async <IActionResult> Run(
[HttpTrigger(AuthorizationLevel.Function, "post", Route = request,|
log, executionContext)

T GetModelFromPayload<T>() where T : class

{
var json = request. . ();
return JsonSerializer. <T>(json);

("EmailSending HTTP trigger function processed a request.");

var configRootDirectory = executionContext. ;
AppDomain. (Constants. , configRootDirectory);

log. ($"Function App Directory: {configRootDirectory}");

IMoongladeNotification notification = new EmailHandler(log)
{

AdminEmail = request.

EmailDisplayName = request.

I

switch (request.
{
case MailMesageTypes.
awalt notification. ();
return new OkObjectResult("TestMail Sent");

default:
throw new ArgumentOutOfRangeException();
}
+

catch (Exception e)
{
log. (e, e.);
return new ConflictObjectResult(e.

And if you still need to customize the hosting framework, such as by using DI, you can
do so:

[assembly: FunctionsStartup(typeof(MyNamespace.Startup))]

namespace MyNamespace
{ public class Startup : FunctionsStartup
¢ public override void Configure(IFunctionsHostBuilder builder)
{ builder.Services.AddHttpClient();

builder.Services.AddSingleton<IMyService>((s) => {
return new MyService();
});

builder.Services.AddSingleton<ILoggerProvider, MylLoggerProvider>();

A straightforward Web API with little business demand might be moved to Azure
Function to dramatically reduce development and maintenance costs. We may
concentrate on the business logic itself rather than the infrastructure code by
employing a serverless platform. We can keep using the programming language that
we are accustomed to while still keeping some flexibility and security.

Thank yow

