

Migrating an

ASP.NET Core Web API

Project to Azure

Function

This blog will introduce the key migration steps and practices to assist you in

migrating similar Web API projects.

Background of the project
__

This Web API project is part of my blog system and is used to send emails to

administrators or readers. In the overall blog architecture, it is separate from the main

blog site and runs on an independent service with Azure App Service. It makes use of

a custom API Key for authentication. Passwords for email accounts are stored in Azure

Key Vault. The backend has no database support. When the main blog site requires

push notifications, it will send the payload of the notification to the API via REST

request using the website's proprietary API Key to complete the email sending.

Why is Azure Function used?

__

Even though the Web API lacks event and queue functionality that is typically found in

a serious notification system, my simple notification system has been running well

and can meet business needs. The most serious issue, however, is the cost, which

includes operation and maintenance costs as well as development costs.

First and foremost, the App Service Plan that hosts the Web API is a significant

complexity. There is currently no way to select Consumption Plan for an ASP.NET

Core application, and as such the API will be billed even when it is inactive.

According to the company, the API is only used about ten times per day, with a total

processing time of less than two minutes. However, I must pay for the remaining 1438

minutes every day. I must also free up computing resources so that Microsoft can

assign them to those who require them in COVID-19, as well as reduce my carbon

footprint to contribute to global environmental improvement.

Second, even a basic and straightforward Email notification feature needs a full

framework to support it. Although ASP.NET Core offers a framework that is incredibly

adaptable and robust, Azure Function may entirely free up these fundamental chores.

Infrastructure is irrelevant to Azure Function; it only cares about business code. In

other words, developers typically just need to write the function's business logic and

not the code necessary to start, route, or assign API Keys.

Finally, Azure Function enables me to keep using my existing knowledge of the.NET

technology stack. To create business logic, Azure Function supports.NET, Java,

Python, Node.js, and even PowerShell. This indicates that my code can run on a new

platform with very little modification.

Am I really stuck with Azure forever?

Is the question of whether Azure Functions will force your application to run

exclusively on Azure the most crucial one for everyone? The response is no. Since the

infrastructure of Azure Function is now open source and its apps can be containerized

and deployed to any cloud, including those of rivals, such as China's Alibaba Cloud

and other platforms, it has significantly aided rivals in building world-class serverless

platforms. You can run the full design in a local data centre if you don't want to use

the cloud. Therefore, there is no need to be concerned about falling victim to

Microsoft's traps.

Migration procedures and essentials

The basics of using Azure Function are not covered in this tutorial.

Learn the fundamentals.

API Key verification

This is a component of the original project framework for the ASP.NET Core Web API.

To prevent the API from being called without authorization, I utilized a special API

key.

Azure Function frees us from this section of code and offers a very similar App Key

concept to manage authentication with only a few mouse clicks and no lines of code!

These App Keys can be sent with the query string to the function endpoint. I therefore

erased the entire API Key code that I had laboriously written when porting the

programme. There will be no more maintenance fees for this section of the code.

Azure Key Vault for reading

The first application made use of Microsoft.Azure.

To read data from Azure Key Vault, use the KeyVault package and the System

Assigned Identity of the App Service. It is clear that this relationship with Azure is true.

To avoid coupling the code with Azure and to enable me to quickly set up certain

configuration items to read from Key Vault, I chose to use environment variables in

Azure Function. The application still views Azure Key Vault values as environmental

variables even if the method of reading them is transparent to the application.

Set the configuration items that need to read from the Key Vault to the format shown

below on the Configuration page of Azure Function.

My EmailAccountPassword, for instance, is an environment variable. When

configuration is successful, Source will be shown as the key vault reference.

var keyVaultClient = new KeyVaultClient(new

KeyVaultClient.AuthenticationCallback(azureServiceTokenProvider.KeyVaultTo

kenCallback));

builder.AddAzureKeyVault(

 $"https://{builtConfig["AzureKeyVault:Name"]}.vault.azure.net/",

 keyVaultClient,

new DefaultKeyVaultSecretManager());

@Microsoft.KeyVault(SecretUri=<Azure Key Vault Secret Uri>)

The application's code for accessing this environment variable is identical to that for

reading the standard environment variable:

Because Azure Key Vault is incredibly versatile, you may continue to maintain the

deployment on the local development environment or other clouds independent.

Your code is not required to use solely Azure by Microsoft.

Please be aware that your Function App must activate System Assigned Identity on its

own.

Additionally, you must set up Get and List permissions in Azure Key Vault for the

Function App.

Environment.GetEnvironmentVariable("EmailAccountPassword",

EnvironmentVariableTarget.Process)

With just a few mouse clicks, all of this is possible.

Consumption Strategy

 This is most likely the most exciting aspect of the entire Function. Consumption Plan

is an option when creating an Azure Function. The Plan only charges for the function's

execution time. The billing for my blog notification system is less than $5 per month,

assuming that the API is only called a few times per day. The previous Standard S1

App Service Plan cost $69.35 per month, so the Consumption Plan saved me over

$60.

The Code

What distinguishes the Function code from the original Web API code, which is the

one thing that.NET programmers care about the most?

First of all, only your business code is still required; Program.cs, Startup.cs, Controller,

and even appsettings.json are no longer required. Now that there is only one class in

my application tier, the logic is remarkably identical to that of the original Web API

Controller.

Original API Controller source code:

The following is the Azure Function code:

And if you still need to customize the hosting framework, such as by using DI, you can

do so:

Conclusion

__

A straightforward Web API with little business demand might be moved to Azure

Function to dramatically reduce development and maintenance costs. We may

concentrate on the business logic itself rather than the infrastructure code by

employing a serverless platform. We can keep using the programming language that

we are accustomed to while still keeping some flexibility and security.

Thank you
